
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Deriving L-System Grammar from Real City Street

Networks Using Pathfinding Algorithms

Aryo Wisanggeni - 13523100

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: arrrryow@gmail.com , 13523100@std.stei.itb.ac.id

Abstract— City street networks are inherently complex due to

their organic and often unstructured development, influenced by

geographic, historical, and planning factors. Modeling these

networks accurately poses a significant challenge, both in terms

of analytical complexity and computational cost. This paper

explores am approach that combines uninformed pathfinding

algorithms with Lindenmayer systems (L-systems) to simplify

and compress complex urban networks into generative rule sets.

Using blind search methods such as Breadth-First Search (BFS)

and Depth-First Search (DFS), traversal patterns can be

analyzed from real-world street layouts. These patterns are then

encoded into compact, recursive L-system rules capable of

regenerating the original network or extending it while

preserving its underlying spatial logic. This technique offers data

compression and enables lightweight generation of complex

structures, making it ideal for applications in procedural content

generation, simulation, and urban planning.

Keywords—Pathfinding Algorithm; Deriving L-System; Real

City Street Network

I. INTRODUCTION

City streets networks are highly complex by how they are
often unorganized. They develop over long periods by
geographical constraints, historical development, planning
decisions, and various other factors. This results in unique
patterns in different street networks all around the world as a
result of those factors. Because of that, city streets present a
challenge to model and simulate. Additionally, their
complexity often demands substantial computational resources
for storage and processing. However, accurately modeling
these patterns holds significant value, especially for
applications like in-game asset generation that requires to be
lightweight so that users are able to run it smoothly while also
be visually engaging to keep user attention. It's also crucial for
future urban planning, allowing us to predict how street
networks might evolve naturally without land-use restrictions.
Consequently, simplifying these complex street patterns into
more manageable, generative forms becomes a crucial
endeavor.

Conversely, L-systems or Lindenmayer systems are a set of
rules that were first developed to provide a formal description
of how plants, fungi, or similarly shaped multicellular
organism’s growth can be modelled. These set of rules are
often very simple, being only a string of usually not more than

20 characters. Yet recursively, they are able to model the
growth of organisms that seemingly do not have an obvious
pattern with high precision. This accuracy is partly because of
nature’s tendency to have fractal patterns that
programmatically can be modelled with recursion. From the
characteristics above, L-system’s ability to produce high levels
of complexity from minimal input makes them an interesting
candidate for abstracting and generating spatial patterns,
including those found in urban environments.

In respect to that, pathfinding algorithms are a fundamental
component in analysing and navigating complex networks.
These algorithms usually help in identifying efficient traversal
routes within a graph of a network. But on the other hand, they
also support analysis of a graph network as a whole by finding
trends and key characteristics of the network. This is especially
true for blind pathfinding algorithms that search the network
without a heuristic leading them to a certain goal. Exploring
without a goal in mind is the exact characteristic needed for the
algorithm to completely explore the entire graph efficiently.
Examples of these are Breadth First Search (BFS) and Depth
First Search (DFS), one which goes layer-by-layer and another
going through a route until it reaches an end to go back and try
another route. Their searching strategy, alongside other blind
pathfinding algorithm, simplifies the search process and give
key insights on the network by not focusing on how they
explore the graph, but by allowing developers to focus on
heuristics on how to gain insight of the graph itself.

Given the complexity of city streets and the trouble it
presents in simplifying it, alongside the l-system's inherent
ability to generate complex patterns using simple recursive
rules, a natural synergy emerges between these two domains.
By using pathfinding algorithms to explore and extract
traversal patterns from urban networks, we can transform the
collected data into a rule-based grammar that reflects the
spatial logic of real-world streets. This grammar can then be
used to generate new street networks that are both natural in
design and computationally lightweight. This approach has
promising applications in fields such as procedural content
generation for games and simulations and many other planning
applications. It is with these considerations that inspires this
paper to be made.

mailto:arrrryow@gmail.com
mailto:13523100@std.stei.itb.ac.id

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

II. THEORETICAL FRAMEWORK

A. Graph

Graph is a data structure that represents relationship
between variables. A graph is made up of vertices (nodes) that
are connected by the edges (lines). In applications using
graphs, nodes represent discrete objects like people or places,
while the edges describe a relationship between the discrete
objects like routes from one place to another or people’s
relationships.

Figure 1. A graph with four vertices and four edges
Source: link

1. Types of Graphs based on Edge Weight

a. Unweighted Graph

Unweighted graphs are graphs that simply have
the same weight for all edges, no matter how
long/short they are even visually.

b. Weighted Graph

Weighted graphs are graphs that have values
attached to every edge. These values represent the
cost to use/go through said edge from one vertex
to another. This value makes a path from A to B
different depending on which path or set of edges
is used and the weight on said edges.

Figure 2. Weighted graph example. Source: link

B. Pathfinding Algorithms

Pathfinding algorithms are a group of algorithms with the
goal of exploring a graph and finding the path from a starting
point to destination point. The behavior and way of exploring
the graph of each pathfinding algorithm differ and may also
give different results. These distinctions have their own
benefits and weakness in different problem cases. Among those
different algorithms are also ones that give the most optimal
path to the destination. In respect to that, pathfinding
algorithms are split into two major groups: uninformed

pathfinding and informed pathfinding [1]. Both of which have
their own ways of finding the most optimal path.

To achieve the most optimal path or to help just finding a
path toward the goal, a lot of pathfinding algorithm relies on
evaluation functions f(n) to find their way towards it. The
evaluation function, in a lot of algorithms, uses two other
subfunctions to compound it. Those being g(n), the function to
measure the cost of how far a path has gone from the start, and
the other being h(n), a function to measure the cost of how
much farther the goal is from the current position, usually
estimated with a heuristic as most of the time we don’t know
how far the goal is. The composition of one or both g(n) and
h(n) leads to the formation of f(n). The composition itself is
determined by the algorithm that is being used.

1. Uninformed Search

 Uninformed search, also called blind search, are a
group of pathfinding algorithms that find a path to the
destination by blindly exploring the graph in hopes that
it will get to the goal without any information about the
goal while exploring [1]. It usually depends on a
condition that is met when the goal itself is actually
reached, but doesn’t know if the search is getting
closer or not to the goal while searching. Three
common examples of this type of algorithm are
Breadth First Search (BFS), Depth First Search (DFS),
and Uniform Cost Search (UCS).

a. Breadth First Search (BFS)

 BFS is an algorithm that searches one step at
every alternative path before going deeper into one
path. This approach can be represented well using
layers, like the ones in figure 3, BFS will choose
to explore the nodes at layer 1 first before going to
layer 2. This approach allows it to guarantee the
most optimal path towards the goal, as when the
goal is found, it will already be at its shortest from
the start. This search algorithm is completely blind
and does not consider cost of each edge when
traversing from node to node and is most suited
for unweighted graphs. The biggest weakness of
BFS is its high memory usage as it is very likely to
explore most of the graph that does not need to be
explored to reach the goal. In implementations, the
queue data structure is used in order to achieve the
behavior needed for this algorithm.

Figure 3. Diagram of BFS searching layer by
layer. Source: link

https://images.javatpoint.com/tutorial/dms/images/graph-
https://www.baeldung.com/wp-content/uploads/sites/4/2021/12/weighted-example.jpg
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/21-Route-Planning-(2025)-Bagian1.pdf
https://www.geeksforgeeks.org/difference-between-bfs-and-dfs/

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

b. Depth First Search (DFS)

 DFS is an algorithm that explores as deep as
possible along one path before backtracking to try
alternative routes. As illustrated in figure 4, DFS
begins at the starting node and proceeds by
visiting a connected node, then another connected
node from there, continuing down a single path
until it either reaches the goal or a dead end. Only
then does it backtrack to previous nodes to explore
other unexplored paths. This approach is efficient
in terms of memory, as it typically stores only the
nodes along the current path in memory. However,
DFS does not guarantee finding the most optimal
or shortest path to the goal, especially in wide
graphs with many branches, since it may miss
closer solutions in favor of going deep.
Additionally, DFS can become trapped in deep or
even infinite paths without careful handling. This
algorithm is also blind to edge cost and best suited
for unweighted or exploratory searches. In
implementations, DFS often uses a stack data
structure, either explicitly or implicitly through
recursion, to manage the nodes being visited.

Figure 4. Diagram of DFS searching until reaches
dead end. Source: link

c. Uniform Cost Search (UCS)

 UCS is a pathfinding algorithm that expands
the node with the lowest cumulative cost from the
start, rather than by depth or arbitrary order.
Unlike BFS or DFS, UCS takes into account the
actual cost it takes to reach a node, denoted as
g(n), where n is a particular node. This means that
UCS prioritizes paths that are cheaper, not
necessarily shorter in steps. At each step, the
algorithm selects the node with the smallest g(n)
value from a priority queue and continues
expanding until the goal is reached.

 When the goal is selected for expansion,
UCS guarantees that the path found is the one with
the lowest total cost, making it optimal for graphs
with varying edge weights or costs like the ones in
weighted graphs. However, its main weakness lies
in performance. It may still explore a large portion

of the graph, especially when many low-cost
nodes must be processed before reaching the goal.
Due to its similarities with BFS, in the case of an
unweighted graph, UCS is the exact same as BFS.

2. Informed Search

 Informed search, also called heuristic search, are a
group of pathfinding algorithms that find a path to the
destination by relying on a heuristic. The heuristic can
be a form of a way to find the goal by various
characteristics of the graph that “seems” to lead to the
goal most efficiently. Thus, using heuristics,
algorithms in this category utilizes h(n) to estimate the
end. Two common algorithms using h(n) are Greedy
Best First Search (GBFS) and A* algorithm

a. Greedy Best First Search (GBFS)

 GBFS is a pathfinding algorithm that focuses
solely on moving toward the goal as quickly as
possible by using a heuristic estimate. It evaluates
nodes based on the function f(n) = h(n), where
h(n) is a heuristic that estimates the cost from node
n to the goal. This means GBFS does not consider
how far it has already traveled (no g(n) is used);
instead, it chooses the next node that appears to be
closest to the goal based on the heuristic. As a
result, it can be very fast and often reaches the
goal quickly, especially in open or sparse graphs.

 However, this speed comes with a trade-off.
GBFS is not guaranteed to find the optimal path,
and it may make poor decisions in environments
with misleading heuristics or many obstacles. The
algorithm relies on a priority queue, selecting the
next node with the lowest h(n) value. Its greedy
nature makes it suitable for scenarios where speed
is more important than accuracy, but caution must
be taken with the heuristic design to avoid
inefficient or incorrect routes.

b. A* Algorithm

 A*, or A Star, is an algorithm that utilizes
both g(n) and h(n) to form its cost function f(n).
Effectively, this leads to f(n) = g(n) + h(n). Using
both functions allows the algorithm to account for
how far it has already traveled (g(n)) and estimate
how much farther it needs to go (h(n)) to reach the
goal. This combination enables A* to form paths
that are not only goal-oriented but also cost-
efficient. By balancing actual cost and heuristic
estimation, A* avoids paths that stray too far (high
g(n)) and avoids being overly optimistic about
shortcuts (low h(n)).

 As a result, A* is one of the few algorithms
that can guarantee the optimal path, as long as the
heuristic used is admissible. This makes it
especially powerful and reliable in domains where
both accuracy and efficiency are critical. A*
typically uses a priority queue to expand nodes in

https://www.geeksforgeeks.org/difference-between-bfs-and-dfs/

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

order of their f(n) value, always choosing the one
with the lowest total estimated cost.

3. Heuristic Function (h(n))

 Heuristic function, denoted as h(n), provides an
estimate of the cost from a given node n to the goal.
Unlike actual path costs (which are known from
traversed paths), the heuristic is an informed guess
used to guide the search more efficiently toward the
target. Heuristics are particularly important in
algorithms like A* and Greedy Best First Search
(GBFS), where they influence which paths are
prioritized during exploration.

 The effectiveness of a heuristic greatly affects both
the efficiency and accuracy of the search. A well-
designed heuristic can significantly reduce the number
of nodes expanded by focusing the search in more
promising directions, whereas a poor heuristic may
lead to inefficient or even incorrect results.

a. Admissible Heuristic

A heuristic is said to be admissible if it never
overestimates the true cost to reach the goal. That
is, for all nodes n: h(n) ≤ h*(n). Where, h(n) is the
estimated cost from node n to the goal and h*(n) is
the actual minimum cost to reach the goal from n
[2].

An admissible heuristic ensures that A* will
always find the optimal path, because it guarantees
the search will not bypass a better route in favour
of a misleading shortcut. This property is critical
when accuracy and path cost minimization are
required.

C. L-Systems

L-systems were defined by Lindenmayer in 1968 as an
attempt to describe the development of multi-cellular
organisms, the L standing for Lindenmayer. L-systems provide
a framework within which these aspects of development can be
expressed in a formal manner [3].

In essence, l-systems are a set of rules and an axiom that
allows the production of shapes. In traditional l-systems, the
rules can be iterated multiple times to produce more complex
shapes. L-systems do not have a set rule saying a character
represent a specific movement, but it is up to the pattern-maker
to figure out characters to put in their l-system and their
meaning to achieve the shapes that they desire.

As an example of an l-system is the fractal tree. Consisting
of the axiom: 0, and the rules: (1 → 11) and (0 → 1[0]0).
Where 0 means to draw a short line, 1 means to draw a long
line, “[“ is to push the current position and angle into a stack
while also turning 45° to the left, lastly “]” popping a position
from the stack and turning 45° to the right. Below in figure 5,
is the first few iterations of this l-system.

Figure 5. First few iterations of fractal tree l-system.
Source: link

This system’s capability to produce intricate shapes and
geometry has high potential in practical uses, particularly in
graph mapping usually takes a lot of computing power and
storage to house. Using l-system, it is possible to compress
huge graphs to become just a set of rules and an axiom,
allowing for compression and also allow further generation
using the same rules iteratively beyond the default scope.

III. PROBLEM ANALYSIS

Urban street networks in real life are unorganized and most
have no pattern and is hard to generalize. To effectively model
these complex networks using l-system, there are a few
limitations and definitions to this paper and experiment.

A. Urban City Networks

The data for modelling the real street networks will use the
format developed and provided by OpenStreetMap (OSMNx)
[4]. Their formatting models real geographical streets as nodes
and edges. One interesting fact about the edge they use is that
in itself are edges, this is to simulate curves within the edge
other than the two nodes that is at the end of the lines. To
simplify and lower computation cost, the main program will
only use nodes from the maps provided by OSMNx. The edges
of these maps will not be used and will only use nodes with
edges being synthetic ones that connect one node to another
based on the edges provided by the original map, but are
straighten to simply. One weakness of this is that granularly,
the curves in the original street network is not preserved, but
the general shape of the city will be roughly preserved and is
good enough for this research.

B. Pathfinding Algorithm

The pathfinding algorithm used for this will be uninformed
searches. The reason being that there is no set goal for this
exploration of the street graphs, rather the aim is to explore the
entire map and find the characteristics of the network. To
simplify, BFS and DFS will be used for their blind searching
capabilities not using any cost function, which fits the
specifications for the task. Both those algorithms will be using
visited node memory as a way to avoid loops and multiple
visits of a single node.

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/22-Route-Planning-(2025)-Bagian2.pdf
https://archive.nptel.ac.in/content/storage2/courses/106106049/downloads/Lindenmayer%20Systems%20.pdf
https://en.wikipedia.org/wiki/L-system#/media/File:Graftal0.png
https://www.researchgate.net/publication/262206447_OpenStreetMap

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

C. L-System

In order to build these networks using l-system, there needs
to be several modifications to the traditional l-system for its use
in this paper. The basics of l-system that will be present are the
basic axiom and set of rules to present the network. The
modifications come by adding the position (cartesian
coordinates) of the original map into the l-system. In addition
to that, the rounded distance and angle of the edges are also to
be recorded. These steps are necessary to preserve the shape of
the original map. This modified l-system to present the original
map will be called numerical l-system in this paper

However, there will also be a reference l-system that is an
l-system produced by simplifying the numerical l-system and
plotted in a way that is similar to traditional system using fixed
angles and distance. This l-system is utilized to model the trend
of the street networks.

IV. IMPLEMENTATION

The implementation will use a main program to determine
the flow of future users of the program, should there be further
interest in this research. But below are the implementation
steps necessary in order to derive the l-system of the street
networks.

A. Program File Structure

.

├── analysis

│ ├── __init__.py

│ ├── lazy_pattern_extractor.py

│ └── lsystem_maker.py

├── classes

│ ├── branch_node.py

│ └── __init__.py

├── main.py

├── playground.py

├── testing

│ ├── data_structure_analysis.py

│ └── node_analysis.py

└── util

 ├── download_graphml.py

 ├── draw_lsystem.py

 ├── __init__.py

 ├── pattern_plot.py

 └── save_load.py

Figure 6. File Structure of the min program

Most of the implementation is in analysis directory. The

script lazy_pattern_extractor.py contains the implementation

of BFS and DFS algorithms to extract patterns from graphml

raw data. While lsystem_maker.py is the script that generates

numeric and reference l-system.

B. Data Structure

In order to build the l-systems, an analysis on the city
network is needed. This is to find general patterns while also
preserving the shape of the network itself. To model this, there
are two classes used.

Figure 7. Branch class definition

Figure 8. LocationNode class definition

 The main class used is the LocationNode. It represents a
single node in the original map with some modifications. The
only attribute that is preserved and needed is the id and
position. There is also a list of branches that is present in the
LocationNode, the list consists of Branch objects.

 Branch class is the synthetic edges between each node, but
to facilitate the l-system drawing needs, it is presented as a
member of LocationNode and has the attribute angle and
distance to other nodes. Angle in particular refers to the angle
with the positive x-axis as the reference point. Positive angles
in this context is the turn degree to the left, while negative
angles is the turn degree to the right. In addition to that, to
avoid calculation errors because proximations, the target node
id is also stored in the Branch class to simplify and ensure an
edge is between two valid nodes.

C. Deriving Patterns from City Networks using Pathfinding

Algorithm

 To build the patterns and find characteristic of the
networks, BFS and DFS algorithm will be used. The pattern
will take form in the two classes presented in part A, which are
LocationNode and Branch class.

1. BFS Algorithm

Function BFS_Extract_Patterns(Graph G,

Dictionary positions):

 Initialize visited as empty set

 Initialize patterns as empty list

 node_to_edges ← Preprocess_Edges(G)

 For each node start in G.nodes:

 If start is in visited or start not in

node_to_edges:

 Continue to next node

 Initialize queue with start node

 Add start to visited set

 While queue is not empty:

 s ← Dequeue from queue

 pos_s ← positions[s]

 solution ← new LocationNode(s, pos_s)

 For each edge (u, v, key, data)

connected to s in node_to_edges[s]:

 other ← v if u == s else u

 If other not in positions:

 Continue to next edge

 pos_other ← positions[other]

 dist ← EuclideanDistance(pos_s,

pos_other)

 angle ← ComputeAngle(pos_s,

pos_other)

 branch ← new Branch(other, angle,

dist)

 If branch is not already in

solution.branches:

 Append branch to solution.branches

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

 If other not in visited:

 Add other to visited

 Enqueue other to queue

 Append solution to patterns

 Return Remap_Node_IDs(patterns)

Figure 9. Pseudocode for BFS algorithm to extract patterns.

2. DFS Algorithm

Function DFS_Extract_Patterns(Graph G,

Dictionary positions):

 Initialize visited as empty set

 Initialize patterns as empty list

 node_to_edges ← Preprocess_Edges(G)

 Define Recursive Function DFS(s):

 pos_s ← positions[s]

 solution ← new LocationNode(s, pos_s)

 For each edge (u, v, key, data) in

node_to_edges[s]:

 other ← v if u == s else u

 If other not in positions:

 Continue to next edge

 pos_other ← positions[other]

 dist ← EuclideanDistance(pos_s,

pos_other)

 angle ← ComputeAngle(pos_s, pos_other)

 branch ← new Branch(other, angle, dist)

 If branch not in solution.branches:

 Append branch to solution.branches

 If other not in visited:

 Add other to visited

 Call DFS(other)

 Append solution to patterns

 For each node start in G.nodes:

 If start not in visited AND start in

node_to_edges:

 Add start to visited

 Call DFS(start)

 Return Remap_Node_IDs(patterns)

Figure 10. Pseudocode for DFS algorithm to extract
patterns.

D. Deriving Numeric L-System

 Generating the numeric l-system first is by converting the
patterns produced before into strings of rules. This is done by
encoding certain steps with certain characters. The encoding is
listed in figure 11.

No Character Meaning

1 F<n> Go forward as far as n distance unit

2 +<n> Turn left as far as n degree unit

3 -<n> Turn right as far as n degree unit

4 [Push current position and angle to stack

5] Pop position and angle from stack

6 X<n> Do rule n

Figure 11. L-system encoding and meaning.

 To derive the numeric l-system, we will follow a simple
procedure. For each LocationNode, we will make a single rule.
The rule will iterate through the branches in the LocationNode.
For each branch, first record the angle using the symbol “+” or
“-“, then record the distance with “F”, lastly if the rule of node
at the other branch is not empty, then add “[Xid]” to the rule.
Repeat the sequence before until all branches are recorded.

 The next procedure is to clean up the raw branches that are
produced. First is to delete all rules that are empty, these are
produced because of nodes that do not have branches on them
alongside deleting any reference toward them in the rules.
Another clean up to do is by reindexing the id that the rules
use. Before it was using the id from the LocationNode, but
from the simplification and to make the id more meaningful,
the id on the rules are reindexed from 1 to n with no gaps, n
being the number of rules produced.

 Lastly for the axiom of the system itself, it will consists of
all rules that was generated alongside their position from the
patterns first produced by the raw data.

E. Deriving Reference L-System

 For reference l-system, it will be derived using the filtered
numeric l-system. The biggest difference is that the numbers
after the characters “F”, “+”, and “-“ will be deleted for
generalization. Then after another round of generalization, the
rules be reindexed again as to not have two identical rules. id is
also stored in the Branch class to simplify and ensure an edge
is between two valid nodes. This remapping is done by noting
the new generalized forms and assign new ids to the new
shapes.

V. TESTING AND ANALYSIS

 The main program has several options, as seen in figure 12.
With the main creation being in option 1-3. Option 1 is to
download the dataset from OpenStreetMap[4] database, option
2 is to generate the patterns or LocationNodes from the
downloaded dataset, while option 3 is to generate the l-sytem
from the pattern that is produced before. Below are screenshots
of the main program.

Figure 12. Main program options

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Figure 13. Option 1: downloading “Medan, Indonesia” from

OSMNx database, documentation

Figure 14. Option 2: creating patterns from raw OSMNx data

Figure 15. Option 2: result of creating pattern

Figure 16. Option 3: input pattern file for processing into l-

system

Figure 17. Option 3: choosing which l-system to generate

Figure 18. Option 3: generating numeric l-system

Figure 19. Option 3: generating reference l-system

 In terms of pathfinding algorithm comparison of BFS and
DFS, they both produce the same results, only BFS is faster

than DFS for exploring entire graphs. Reason being DFS needs
more time to explore new paths, especially when it is deep in
one rout, the backtracking to go to another path takes too long,
compared to BFS that has no trouble finding the next route to
go to thanks to the queue data structure. Result of this
comparison can be seen in figure 20.

Figure 20. Algorithm comparison of BFS and DFS

Options 4-7 are to list the files in each directory to simplify
checking for the users. While option 8-10 are to plot patterns
and l-systems that are produced. The plotting of some large
cities can take a long time, around a few minutes. Below are
test results from plotting patterns and produced l-system from
Bandung City dataset.

Figure 21. Option 8: generated plot from raw pattern of
bandung.json.

Figure 22. Option 9: generated plot from numerical l-system
from bandung.json

https://osmnx.readthedocs.io/en/stable/user-reference.html#osmnx.graph.graph_from_place

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

.
Figure 23. Option 9: generated plot from reference l-system

from bandung.json

Figure 24. Option 10: side-by-side comparison of plot
generated raw pattern and from numeric l-system from

bandung.json

 In addition to being able to generate the same city and also
record the trend of the street network. A lot of compression
was done by making the l-system. For comparison, below is the
size of the pattern json file and its numeric l-system json file
size.

No Dataset Pattern size L-System size Compress

1 Bandung 5,293 KB 758 KB 85.69%

2 Jakarta 20,038 KB 1,440 KB 92.81%

3 New
York

16,096 KB 1,540 KB 90.43%

Figure 24. Compression rate of a few sample cities.

VI. CONCLUSION

 In conclusion, the combination of uninformed
pathfinding algorithms and L-systems offers a powerful
method for analyzing and compressing complex street
networks. By leveraging blind search algorithms such as BFS
and DFS, the network graph can be explored to uncover
structural patterns.

Once these patterns are identified, they can be encoded into
L-system rules. These rules are string-based instructions that
capture the basics of the network's layout. Not only does it
allow for the reconstruction of the original network through
iterative application but also data compression. A network that
originally requires thousands of bytes to store can instead be
represented by a concise set of L-system rules, which
significantly reduces storage requirements and computational

overhead during regeneration. Other than that, this L-system-
based approach also provides a compact and interpretable
representation of the network’s tendencies. This insight is
particularly valuable when extending existing networks.
Planners and designers can use the extracted L-system rules to
generate new segments that align with the existing urban
pattern, maintaining consistency.

This technique is especially beneficial in domains where
procedural generation of complex structures is needed under
tight computational constraints, such as in simulation, game
development, urban planning, or modeling of biological and
natural systems. By capturing the logic behind complex
structures in a set of simple, repeatable rules, L-systems enable
the generation of rich and believable forms without the need
for heavy data storage or computation.

Ultimately, this work demonstrates that through the
integration of pathfinding and generative systems like L-
systems, it is possible to not only compress but also
meaningfully understand and extend complex networks. This
dual benefit makes the approach both efficient and insightful,
offering practical applications across a wide range of fields.

PROJECT OUTPUT LINKS

Youtube Video Link : link

Github Repository Link : link

ACKNOWLEDGMENT

The completion of this paper could not have been done
without the help of IF2211 lecturers, especially Dr. Ir. Rinaldi
Munir, M.T. whom has taught class K02 2025 for Algorithm
Strategies class and provided a great amount of learning
resources for students to study from online. Alongside the
lecturers, the author would also like to thank the classmates of
K02 for the support and fun times shared during the semester,
as without them, surviving and finishing all courses in this
semester would not have been possible. Lastly, a special thanks
for the authors family for supporting the author mentally and
financially throughout the semester. The author hopes this
paper to serve as a useful reference, not only for others
interested in the relevant field of study but also as a resource
for the author’s future work.

REFERENCES

[1] Dr. Ir. Rinaldi Munir, M.T., Route Planning Part 1,
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/21-
Route-Planning-(2025)-Bagian1.pdf, accessed at 23 June 2025

[2] Dr. Ir. Rinaldi Munir, M.T., Route Planning Part 2,
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/22-
Route-Planning-(2025)-Bagian2.pdf, accessed at 23 June 2025

[3] Lindenmayer Systems (L-System),
https://archive.nptel.ac.in/content/storage2/courses/106106049/downloa
ds/Lindenmayer%20Systems%20.pdf, accessed at 23 June 2025

[4] Kevin Curran, University of Ulster, OpenStreetMap,
https://www.researchgate.net/publication/262206447_OpenStreetMap,
accessed at 23 June 2025

[5] Humera Farooq, et al., An Approach to Derive Parametric L-System
Using Genetic Algorithms,
https://www.researchgate.net/publication/221365144_An_Approach_to_

https://youtu.be/iLogkNmspM0
https://github.com/Staryo40/Makalah_Stima-Deriving_L-Systems_From_Maps
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/21-Route-Planning-(2025)-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/21-Route-Planning-(2025)-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/22-Route-Planning-(2025)-Bagian2.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/22-Route-Planning-(2025)-Bagian2.pdf
https://archive.nptel.ac.in/content/storage2/courses/106106049/downloads/Lindenmayer%20Systems%20.pdf
https://archive.nptel.ac.in/content/storage2/courses/106106049/downloads/Lindenmayer%20Systems%20.pdf
https://www.researchgate.net/publication/262206447_OpenStreetMap
https://www.researchgate.net/publication/221365144_An_Approach_to_Derive_Parametric_L-System_Using_Genetic_Algorithm

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Derive_Parametric_L-System_Using_Genetic_Algorithm, accessed at
23 June 2025

[6] Surya Sujarwo, et al., Implementation of L-System in Procedural City
Generation using Java, https://research-
dashboard.binus.ac.id/uploads/paper/document/publication/Proceeding/
ComTech/Vol.%2001%20No.%202%20Desember%202010/08%20-
%20Surya%20Surjawo%20.pdf, accessed at 23 June 2025

STATEMENT

Hereby, I declare that this paper I have written is my own

work, not a reproduction or translation of someone else’s

paper, and not plagiarized.

Bandung, 1 Juni 2025

Aryo Wisanggeni 13523100

https://www.researchgate.net/publication/221365144_An_Approach_to_Derive_Parametric_L-System_Using_Genetic_Algorithm
https://research-dashboard.binus.ac.id/uploads/paper/document/publication/Proceeding/ComTech/Vol.%2001%20No.%202%20Desember%202010/08%20-%20Surya%20Surjawo%20.pdf
https://research-dashboard.binus.ac.id/uploads/paper/document/publication/Proceeding/ComTech/Vol.%2001%20No.%202%20Desember%202010/08%20-%20Surya%20Surjawo%20.pdf
https://research-dashboard.binus.ac.id/uploads/paper/document/publication/Proceeding/ComTech/Vol.%2001%20No.%202%20Desember%202010/08%20-%20Surya%20Surjawo%20.pdf
https://research-dashboard.binus.ac.id/uploads/paper/document/publication/Proceeding/ComTech/Vol.%2001%20No.%202%20Desember%202010/08%20-%20Surya%20Surjawo%20.pdf

